1. Extract data
Code:
import seaborn as sns #use seaborn lib
import matplotlib.pyplot as plt #use matplotlib lib
tips=sns.load_dataset("tips") #get "tips" dataset
print(tips)
print(type(tips))
Result:
2. Histogram Graph
Code:
histogram_plot=plt.figure() #make many graphs in one figure
axes1=histogram_plot.add_subplot(1,2,1) #make 1st subplot in (1x2)
axes1.hist(tips['total_bill'],bins=10) #set 'total_bill' as histogram with ten x-axis
axes1.set_title('Histogram of Total Bill')
axes1.set_xlabel('Frequency')
axes1.set_ylabel('Total Bill')
axes2=histogram_plot.add_subplot(1,2,2) #make 2st subplot in (1x2)
axes2.hist(tips['tip'],bins=10) #set 'tip' as histogram with ten x-axis
axes2.set_title('Histogram of Tip')
axes2.set_xlabel('Frequency')
axes2.set_ylabel('Tip')
Result:
3. Scatterplot Graph
Code:
scatter_plot=plt.figure()
axes1=scatter_plot.add_subplot(1,1,1)
axes1.scatter(tips['total_bill'],tips['tip'])
axes1.set_title('Scatterplot of Total Bill vs Tip')
axes1.set_xlabel('Total Bill')
axes1.set_ylabel('Tips')
Result:
4. Boxplot Graph
Code:
boxplot=plt.figure()
axes1=boxplot.add_subplot(1,1,1)
axes1.boxplot([tips[tips['sex']=='Female']['tip'],
tips[tips['sex']=='Male']['tip']],
labels=['Female','Male'])
axes1.set_xlabel('Sex')
axes1.set_ylabel('Tip')
axes1.set_title('Boxplot of Tips by Sex')
Result:
5. Multivariate Graph
Code:
def recode_sex(sex):
if sex=='Remale':
return 0
else:
return 1
tips['sex_color']=tips['sex'].apply(recode_sex) #update 'sex_color' to tips
scatter_plot=plt.figure()
axes1=scatter_plot.add_subplot(1,1,1)
axes1.scatter(
x=tips['total_bill'],
y=tips['tip'],
s=tips['size']*10,
c=tips['sex_color'],
alpha=0.5)
axes1.set_title('Total Bill vs tip Colored by Sex and Sized by Size')
axes1.set_xlabel('Total Bill')
axes1.set_ylabel('Tip')
Result:
'AI Library > Pandas' 카테고리의 다른 글
Graph Type (0) | 2021.11.15 |
---|---|
Seaborn Library (0) | 2021.11.14 |
Anscombe's quartet (0) | 2021.11.14 |
Data Extract (0) | 2021.11.12 |
Setting for Pandas (0) | 2021.11.12 |